Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429495

RESUMO

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Peixe-Zebra/genética
2.
Neurology ; 102(5): e209164, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38373275

RESUMO

Brody disease is a rare autosomal recessive myopathy, caused by pathogenic variants in the ATP2A1 gene. It is characterized by an exercise-induced delay in muscle relaxation, often reported as muscle stiffness. Children may manifest with an abnormal gait and difficulty running. Delayed relaxation is commonly undetected, resulting in a long diagnostic delay. Almost all published cases so far were adults with childhood onset and adult diagnosis. With diagnostic next-generation sequencing, an increasing number of patients are diagnosed in childhood. We describe the clinical and genetic features of 9 children from 6 families with Brody disease. All presented with exercise-induced delayed relaxation, reported as difficulty running and performing sports. Muscle strength and mass was normal, and several children even had an athletic appearance. However, the walking and running patterns were abnormal. The diagnostic delay ranged between 2 and 7 years. Uniformly, a wide range of other disorders were considered before genetic testing was performed, revealing pathogenic genetic variants in ATP2A1. To conclude, this case series is expected to improve clinical recognition and timely diagnosis of Brody disease in children. We propose that ATP2A1 should be added to gene panels for congenital myopathies, developmental and movement disorders, and muscle channelopathies.


Assuntos
Transtornos dos Movimentos , Doenças Musculares , Miotonia Congênita , Adulto , Criança , Humanos , Diagnóstico Tardio , Mutação/genética , Doenças Musculares/genética , Marcha
3.
Genome Med ; 16(1): 32, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355605

RESUMO

BACKGROUND: To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease. METHODS: We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected. RESULTS: Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected. CONCLUSIONS: GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Sequência de Bases , Mapeamento Cromossômico , Sequenciamento do Exoma
5.
Eur J Hum Genet ; 32(2): 200-208, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37853102

RESUMO

Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES.


Assuntos
Exoma , Doenças Raras , Humanos , Doenças Raras/genética , Benchmarking , Sequenciamento do Exoma , Testes Genéticos/métodos
7.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003336

RESUMO

A novel variant of unknown significance c.8A > G (p.Glu3Gly) in TPM3 was detected in two unrelated families. TPM3 encodes the transcript variant Tpm3.12 (NM_152263.4), the tropomyosin isoform specifically expressed in slow skeletal muscle fibers. The patients presented with slowly progressive muscle weakness associated with Achilles tendon contractures of early childhood onset. Histopathology revealed features consistent with a nemaline rod myopathy. Biochemical in vitro assays performed with reconstituted thin filaments revealed defects in the assembly of the thin filament and regulation of actin-myosin interactions. The substitution p.Glu3Gly increased polymerization of Tpm3.12, but did not significantly change its affinity to actin alone. Affinity of Tpm3.12 to actin in the presence of troponin ± Ca2+ was decreased by the mutation, which was due to reduced interactions with troponin. Altered molecular interactions affected Ca2+-dependent regulation of the thin filament interactions with myosin, resulting in increased Ca2+ sensitivity and decreased relaxation of the actin-activated myosin ATPase activity. The hypercontractile molecular phenotype probably explains the distal joint contractions observed in the patients, but additional research is needed to explain the relatively mild severity of the contractures. The slowly progressive muscle weakness is most likely caused by the lack of relaxation and prolonged contractions which cause muscle wasting. This work provides evidence for the pathogenicity of the TPM3 c.8A > G variant, which allows for its classification as (likely) pathogenic.


Assuntos
Contratura , Miopatias da Nemalina , Humanos , Pré-Escolar , Actinas/genética , Tropomiosina/genética , Tropomiosina/química , Debilidade Muscular/genética , Debilidade Muscular/patologia , Miopatias da Nemalina/genética , Mutação , Miosinas/genética , Contratura/patologia , Fenótipo , Troponina/genética , Músculo Esquelético/patologia
8.
Nat Commun ; 14(1): 6845, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891200

RESUMO

The short lengths of short-read sequencing reads challenge the analysis of paralogous genomic regions in exome and genome sequencing data. Most genetic variants within these homologous regions therefore remain unidentified in standard analyses. Here, we present a method (Chameleolyser) that accurately identifies single nucleotide variants and small insertions/deletions (SNVs/Indels), copy number variants and ectopic gene conversion events in duplicated genomic regions using whole-exome sequencing data. Application to a cohort of 41,755 exome samples yields 20,432 rare homozygous deletions and 2,529,791 rare SNVs/Indels, of which we show that 338,084 are due to gene conversion events. None of the SNVs/Indels are detectable using regular analysis techniques. Validation by high-fidelity long-read sequencing in 20 samples confirms >88% of called variants. Focusing on variation in known disease genes leads to a direct molecular diagnosis in 25 previously undiagnosed patients. Our method can readily be applied to existing exome data.


Assuntos
Exoma , Polimorfismo de Nucleotídeo Único , Humanos , Exoma/genética , Mutação INDEL , Variações do Número de Cópias de DNA , Análise de Sistemas , Sequenciamento de Nucleotídeos em Larga Escala/métodos
9.
J Neuromuscul Dis ; 10(6): 1055-1074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37807786

RESUMO

BACKGROUND: SELENON(SEPN1)-related myopathy (SELENON-RM) is a rare congenital neuromuscular disease characterized by proximal and axial muscle weakness, spinal rigidity, scoliosis and respiratory impairment. No curative treatment options exist, but promising preclinical studies are ongoing. Currently, natural history data are lacking, while selection of appropriate clinical and functional outcome measures is needed to reach trial readiness. OBJECTIVE: We aim to identify all Dutch and Dutch-speaking Belgian SELENON-RM patients, deep clinical phenotyping, trial readiness and optimization of clinical care. METHODS: This cross-sectional, single-center, observational study comprised neurological examination, functional measurements including Motor Function Measurement 20/32 (MFM-20/32) and accelerometry, questionnaires, muscle ultrasound, respiratory function tests, electro- and echocardiography, and dual-energy X-ray absorptiometry. RESULTS: Eleven patients with genetically confirmed SELENON-RM were included (20±13 (3-42) years, 73% male). Axial and proximal muscle weakness were most pronounced. The mean MFM-20/32 score was 71.2±15.1%, with domain 1 (standing and transfers) being most severely affected. Accelerometry showed a strong correlation with MFM-20/32. Questionnaires revealed impaired quality of life, pain and problematic fatigue. Muscle ultrasound showed symmetrically increased echogenicity in all muscles. Respiratory function, and particularly diaphragm function, was impaired in all patients, irrespective of the age. Cardiac assessment showed normal left ventricular systolic function in all patients but abnormal left ventricular global longitudinal strain in 43% of patients and QRS fragmentation in 80%. Further, 80% of patients showed decreased bone mineral density on dual-energy X-ray absorptiometry scan and 55% of patients retrospectively experienced fragility long bone fractures. CONCLUSIONS: We recommend cardiorespiratory follow-up as a part of routine clinical care in all patients. Furthermore, we advise vitamin D supplementation and optimization of calcium intake to improve bone quality. We recommend management interventions to reduce pain and fatigue. For future clinical trials, we propose MFM-20/32, accelerometry and muscle ultrasound to capture disease severity and possibly disease progression.


Assuntos
Longevidade , Doenças Musculares , Humanos , Masculino , Feminino , Estudos Transversais , Estudos Retrospectivos , Qualidade de Vida , Debilidade Muscular , Fadiga
10.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446101

RESUMO

A five-year-old girl presented with headache attacks, clumsiness, and a history of transient gait disturbances. She and her father, mother, twin sister, and brother underwent neurological evaluation, neuroimaging, and exome sequencing covering 357 genes associated with movement disorders. Sequencing revealed the new variant KCND3 c.838G>A, p.E280K in the father and sisters, but not in the mother and brother. KCND3 encodes voltage-gated potassium channel D3 (Kv4.3) and mutations have been associated with spinocerebellar ataxia type 19/22 (SCA19/22) and cardiac arrhythmias. SCA19/22 is characterized by ataxia, Parkinsonism, peripheral neuropathy, and sometimes, intellectual disability. Neuroimaging, EEG, and ECG were unremarkable. Mild developmental delay with impaired fluid reasoning was observed in both sisters, but not in the brother. None of the family members demonstrated ataxia or parkinsonism. In Xenopus oocyte electrophysiology experiments, E280K was associated with a rightward shift in the Kv4.3 voltage-activation relationship of 11 mV for WT/E280K and +17 mV for E280K/E280K relative to WT/WT. Steady-state inactivation was similarly right-shifted. Maximal peak current amplitudes were similar for WT/WT, WT/E280K, and E280K/E280K. Our data indicate that Kv4.3 E280K affects channel activation and inactivation and is associated with developmental delay. However, E280K appears to be relatively benign considering it does not result in overt ataxia.


Assuntos
Ataxia Cerebelar , Degenerações Espinocerebelares , Masculino , Feminino , Humanos , Degenerações Espinocerebelares/genética , Canais de Potássio Shal/genética , Mutação de Sentido Incorreto , Mutação , Ataxia
11.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166808, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37454773

RESUMO

Ionic calcium (Ca2+) is a key messenger in signal transduction and its mitochondrial uptake plays an important role in cell physiology. This uptake is mediated by the mitochondrial Ca2+ uniporter (MCU), which is regulated by EMRE (essential MCU regulator) encoded by the SMDT1 (single-pass membrane protein with aspartate rich tail 1) gene. This work presents the genetic, clinical and cellular characterization of two patients harbouring SMDT1 variants and presenting with muscle problems. Analysis of patient fibroblasts and complementation experiments demonstrated that these variants lead to absence of EMRE protein, induce MCU subcomplex formation and impair mitochondrial Ca2+ uptake. However, the activity of oxidative phosphorylation enzymes, mitochondrial morphology and membrane potential, as well as routine/ATP-linked respiration were not affected. We hypothesize that the muscle-related symptoms in the SMDT1 patients result from aberrant mitochondrial Ca2+ uptake.


Assuntos
Canais de Cálcio , Cálcio , Humanos , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Transporte de Íons , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculos/metabolismo
12.
Neurol Genet ; 9(5): e200089, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37476021

RESUMO

Background and Objectives: LAMA2-related muscular dystrophy (LAMA2-MD) is a rare neuromuscular disease characterized by proximal and axial muscle weakness, rigidity of the spine, scoliosis, and respiratory impairment. No curative treatment options exist, yet promising preclinical studies are ongoing. Currently, there is a paucity on natural history data, and appropriate clinical and functional outcome measures are needed. We aim for deep clinical phenotyping, establishment of a well-characterized baseline cohort for prospective follow-up and recruitment for future clinical trials, improvement of clinical care, and selection of outcome measures for reaching trial readiness. Methods: We performed a cross-sectional, single-center, observational study. This study included neurologic examination and functional measurements among others the Motor Function Measure 20/32 (MFM-20/32) as primary outcome measure, accelerometry, questionnaires, muscle ultrasound, respiratory function tests, electrocardiography and echocardiography, and dual-energy X-ray absorptiometry. Results: Twenty-seven patients with genetically confirmed LAMA2-MD were included (21 ± 13 years; M = 9; ambulant = 7). Axial and proximal muscle weakness was most pronounced. The mean MFM-20/32 score was 42.0% ± 29.4%, with domain 1 (standing and transfers) being severely affected and domain 3 (distal muscle function) relatively spared. Physical activity as measured through accelerometry showed very strong correlations to MFM-20/32 (Pearson correlation, -0.928, p < 0.01). Muscle ultrasound showed symmetrically increased echogenicity, with the sternocleidomastoid muscle most affected. Respiratory function was impaired in 85% of patients without prominent diaphragm dysfunction and was independent of age. Ten patients (37%) needed (non)invasive ventilatory support. Cardiac assessment revealed QRS fragmentation in 62%, abnormal left ventricular global longitudinal strain in 25%, and decreased left ventricular ejection fraction in 14% of patients. Decreased bone quality leading to fragility fractures was seen in most of the patients. Discussion: LAMA2-MD has a widely variable phenotype. Based on the results of this cross-sectional study and current standards of care for congenital muscular dystrophies, we advise routine cardiorespiratory follow-up and optimization of bone quality. We propose MFM-20/32, accelerometry, and muscle ultrasound for assessing disease severity and progression. For definitive clinical recommendations and outcome measures, natural history data are needed. Clinical Trials Registration: This study was registered at clinicaltrials.gov (NCT04478981, 21 July 2020). The first patient was enrolled in September 2020.

13.
Neuromuscul Disord ; 33(7): 580-588, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37364426

RESUMO

Centronuclear myopathy (CNM) is a heterogeneous group of muscle disorders primarily characterized by muscle weakness and variable degrees of respiratory dysfunction caused by mutations in MTM1, DNM2, RYR1, TTN and BIN1. X-linked myotubular myopathy has been the focus of recent natural history studies and clinical trials. Data on respiratory function for other genotypes is limited. To better understand the respiratory properties of the CNM spectrum, we performed a retrospective study in a non-selective Dutch CNM cohort. Respiratory dysfunction was defined as an FVC below 70% of predicted and/or a daytime pCO2 higher than 6 kPa. We collected results of other pulmonary function values (FEV1/FVC ratio) and treatment data from the home mechanical ventilation centres. Sixty-one CNM patients were included. Symptoms of respiratory weakness were reported by 15/47 (32%) patients. Thirty-three individuals (54%) with different genotypes except autosomal dominant (AD)-BIN1-related CNM showed respiratory dysfunction. Spirometry showed decreased FVC, FEV1 & PEF values in all but two patients. Sixteen patients were using HMV (26%), thirteen of them only during night-time. In conclusion, this study provides insight into the prevalence of respiratory symptoms in four genetic forms of CNM in the Netherlands and offers the basis for future natural history studies.


Assuntos
Miopatias Congênitas Estruturais , Transtornos Respiratórios , Humanos , Músculo Esquelético , Estudos Retrospectivos , Países Baixos/epidemiologia , Dinamina II/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/diagnóstico , Mutação , Transtornos Respiratórios/genética
14.
J Neurol ; 270(8): 3970-3980, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37133535

RESUMO

BACKGROUND AND OBJECTIVES: Primary lateral sclerosis (PLS) is a motor neuron disease characterised by loss of the upper motor neurons. Most patients present with slowly progressive spasticity of the legs, which may also spread to the arms or bulbar regions. It is challenging to distinguish between PLS, early-stage amyotrophic lateral sclerosis (ALS) and hereditary spastic paraplegia (HSP). The current diagnostic criteria advise against extensive genetic testing. This recommendation is, however, based on limited data. METHODS: We aim to genetically characterize a PLS cohort using whole exome sequencing (WES) for genes associated with ALS, HSP, ataxia and movement disorders (364 genes) and C9orf72 repeat expansions. Patients fulfilling the definite PLS criteria by Turner et al. and with available DNA samples of sufficient quality were recruited from an on-going, population-based epidemiological study. Genetic variants were classified according to the ACMG criteria and assigned to groups based on disease association. RESULTS: WES was performed in 139 patients and the presence of repeat expansions in C9orf72 was analysed separately in 129 patients. This resulted in 31 variants of which 11 were (likely) pathogenic. (Likely) pathogenic variants resulted in 3 groups based on disease association: ALS-FTD (C9orf72, TBK1), pure HSP (SPAST, SPG7), "ALS-HSP-CMT overlap" (FIG4, NEFL, SPG11). DISCUSSION: In a cohort of 139 PLS patients, genetic analyses resulted in 31 variants (22%) of which 10 (7%) (likely) pathogenic associated with different diseases (predominantly ALS and HSP). Based on these results and the literature, we advise to consider genetic analyses in the diagnostic work-up for PLS.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doença dos Neurônios Motores , Humanos , Esclerose Amiotrófica Lateral/diagnóstico , Proteína C9orf72/genética , Demência Frontotemporal/complicações , Doença dos Neurônios Motores/diagnóstico , Neurônios Motores/patologia , Espastina , Proteínas , Flavoproteínas , Monoéster Fosfórico Hidrolases
15.
J Neuromuscul Dis ; 10(4): 541-554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37154182

RESUMO

BACKGROUND: Variants in RYR1, the gene encoding the ryanodine receptor-1, can give rise to a wide spectrum of neuromuscular conditions. Muscle imaging abnormalities have been demonstrated in isolated cases of patients with a history of RYR1-related malignant hyperthermia (MH) susceptibility. OBJECTIVE: To provide insights into the type and prevalence of muscle ultrasound abnormalities and muscle hypertrophy in patients carrying gain-of-function RYR1 variants associated with MH susceptibility and to contribute to delineating the wider phenotype, optimizing the diagnostic work-up and care for MH susceptible patients. METHODS: We performed a prospective cross-sectional observational muscle ultrasound study in patients with a history of RYR1-related MH susceptibility (n = 40). Study procedures included a standardized history of neuromuscular symptoms and a muscle ultrasound assessment. Muscle ultrasound images were analyzed using a quantitative and qualitative approach and compared to reference values and subsequently subjected to a screening protocol for neuromuscular disorders. RESULTS: A total of 15 (38%) patients had an abnormal muscle ultrasound result, 4 (10%) had a borderline muscle ultrasound screening result, and 21 (53%) had a normal muscle ultrasound screening result. The proportion of symptomatic patients with an abnormal result (11 of 24; 46%) was not significantly higher compared to the proportion of asymptomatic patients with an abnormal ultrasound result (4 of 16; 25%) (P = 0.182). The mean z-scores of the biceps brachii (z = 1.45; P < 0.001), biceps femoris (z = 0.43; P = 0.002), deltoid (z = 0.31; P = 0.009), trapezius (z = 0.38; P = 0.010) and the sum of all muscles (z = 0.40; P < 0.001) were significantly higher compared to 0, indicating hypertrophy. CONCLUSIONS: Patients with RYR1 variants resulting in MH susceptibility often have muscle ultrasound abnormalities. Frequently observed muscle ultrasound abnormalities include muscle hypertrophy and increased echogenicity.


Assuntos
Hipertermia Maligna , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Estudos Transversais , Predisposição Genética para Doença , Hipertermia Maligna/diagnóstico por imagem , Hipertermia Maligna/genética , Hipertermia Maligna/complicações , Músculo Esquelético/patologia , Mutação , Estudos Prospectivos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Ultrassonografia
17.
Cells ; 12(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048120

RESUMO

The human dopaminergic system is vital for a broad range of neurological processes, including the control of voluntary movement. Here we report a proband presenting with clinical features of dopamine deficiency: severe infantile parkinsonism-dystonia, characterised by frequent oculogyric crises, dysautonomia and global neurodevelopmental impairment. CSF neurotransmitter analysis was unexpectedly normal. Triome whole-genome sequencing revealed a homozygous variant (c.110C>A, (p.T37K)) in DRD1, encoding the most abundant dopamine receptor (D1) in the central nervous system, most highly expressed in the striatum. This variant was absent from gnomAD, with a CADD score of 27.5. Using an in vitro heterologous expression system, we determined that DRD1-T37K results in loss of protein function. Structure-function modelling studies predicted reduced substrate binding, which was confirmed in vitro. Exposure of mutant protein to the selective D1 agonist Chloro APB resulted in significantly reduced cyclic AMP levels. Numerous D1 agonists failed to rescue the cellular defect, reflected clinically in the patient, who had no benefit from dopaminergic therapy. Our study identifies DRD1 as a new disease-associated gene, suggesting a crucial role for the D1 receptor in motor control.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Distúrbios Distônicos/genética
18.
Eur J Hum Genet ; 31(6): 654-662, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36781956

RESUMO

Various groups of neurological disorders, including movement disorders and neuromuscular diseases, are clinically and genetically heterogeneous. Diagnostic panel-based exome sequencing is a routine test for these disorders. Despite the success rates of exome sequencing, it results in the detection of causative sequence variants in 'only' 25-30% of cases. Copy number variants (CNVs), i.e. deletion or duplications, explain 10-20% of individuals with multisystemic phenotypes, such as co-existing intellectual disability, but may also have a role in disorders affecting a single system (organ), like neurological disorders with normal intelligence. In this study, CNVs were extracted from clinical exome sequencing reports of 4800 probands primarily with a movement disorder, myopathy or neuropathy. In 88 (~2%) probands, phenotype-matching CNVs were detected, representing ~7% of genetically confirmed cases. CNVs varied from involvement of over 100 genes to single exons and explained X-linked, autosomal dominant, or - recessive disorders, the latter due to either a homozygous CNV or a compound heterozygous CNV with a sequence variant on the other allele. CNVs were detected affecting genes where deletions or duplications are established as a common mechanism, like PRKN (in Parkinson's disease), DMD (in Duchenne muscular dystrophy) and PMP22 (in neuropathies), but also genes in which no intragenic CNVs have been reported to date. Analysis of CNVs as part of panel-based exome sequencing for genetically heterogeneous neurological diseases provides an additional diagnostic yield of ~2% without extra laboratory costs. Therefore it is recommended to perform CNV analysis for movement disorders, muscle disease, neuropathies, or any other single-system disorder.


Assuntos
Transtornos dos Movimentos , Distrofia Muscular de Duchenne , Humanos , Exoma , Variações do Número de Cópias de DNA , Éxons , Distrofia Muscular de Duchenne/genética , Transtornos dos Movimentos/genética
19.
Genet Med ; 25(1): 49-62, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322151

RESUMO

PURPOSE: Pathogenic variants in genes involved in the epigenetic machinery are an emerging cause of neurodevelopment disorders (NDDs). Lysine-demethylase 2B (KDM2B) encodes an epigenetic regulator and mouse models suggest an important role during development. We set out to determine whether KDM2B variants are associated with NDD. METHODS: Through international collaborations, we collected data on individuals with heterozygous KDM2B variants. We applied methylation arrays on peripheral blood DNA samples to determine a KDM2B associated epigenetic signature. RESULTS: We recruited a total of 27 individuals with heterozygous variants in KDM2B. We present evidence, including a shared epigenetic signature, to support a pathogenic classification of 15 KDM2B variants and identify the CxxC domain as a mutational hotspot. Both loss-of-function and CxxC-domain missense variants present with a specific subepisignature. Moreover, the KDM2B episignature was identified in the context of a dual molecular diagnosis in multiple individuals. Our efforts resulted in a cohort of 21 individuals with heterozygous (likely) pathogenic variants. Individuals in this cohort present with developmental delay and/or intellectual disability; autism; attention deficit disorder/attention deficit hyperactivity disorder; congenital organ anomalies mainly of the heart, eyes, and urogenital system; and subtle facial dysmorphism. CONCLUSION: Pathogenic heterozygous variants in KDM2B are associated with NDD and a specific epigenetic signature detectable in peripheral blood.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Camundongos , Animais , Humanos , Metilação de DNA/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , DNA , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...